Developing an ICU scoring system with interaction terms using a genetic algorithm
نویسندگان
چکیده
ICU mortality scoring systems attempt to predict patient mortality using predictive models with various clinical predictors. Examples of such systems are APACHE, SAPS and MPM. However, most such scoring systems do not actively look for and include interaction terms, despite physicians intuitively taking such interactions into account when making a diagnosis. One barrier to including such terms in predictive models is the difficulty of using most variable selection methods in high-dimensional datasets. A genetic algorithm framework for variable selection with logistic regression models is used to search for two-way interaction terms in a clinical dataset of adult ICU patients, with separate models being built for each category of diagnosis upon admittance to the ICU. The models had good discrimination across all categories, with a weighted average AUC of 0.84 (>0.90 for several categories) and the genetic algorithm was able to find several significant interaction terms, which may be able to provide greater insight into mortality prediction for health practitioners. The GA selected models had improved performance against stepwise selection and random forest models, and provides greater flexibility in terms of variable selection by being able to optimize over any modeler-defined model performance metric instead of a specific variable importance metric. Conflicts of interest: We have no competing interests. Role of the funding source: We received no funding for this study. Corresponding author: Department of Systems and Information Engineering, University of Virginia, 151 Engineer’s Way, P.O. Box 400747, Charlottesville, VA 22904, Tel.: 434-924-5393 E-mail address : [email protected] (Chee Chun Gan)
منابع مشابه
Parameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm
In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملA SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM
In practice, obtaining the global optimum for the economic dispatch {bf (ED)}problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new andefficient method for solving the economic dispatch problem with non-smooth cost functions using aFuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm deals with the issue ofcontrolling the ex...
متن کاملAn integrated environmental management approach to industrial site selection by genetic algorithm and fuzzy analytic hierarchy process in geographical information system
Environmental planning and management can have positive effects on development of some land uses including industrial areas that have a major effect on economic, social and environmental conditions. Considering the most important problems associated with modeling, the fundamental methods and functions of site-selection laid inside the geographical information system are not accounted for the mu...
متن کاملSolving the ridesharing problem with Non-homogeneous vehicles by using an improved genetic algorithm and the social preferences of the users
Most existing ridesharing systems perform travel planning based only on two criteria of spatial and temporal similarity of travelers. In general, neglecting the social preferences caused to reduce users' willingness to use ridesharing services. To achieve this purpose a system should be designed and implemented not just based on two necessary conditions of spatial and temporal similarities, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.06730 شماره
صفحات -
تاریخ انتشار 2016